All Issue

2024 Vol.59, Issue 2 Preview Page

Research Article

30 April 2024. pp. 283-294
Abstract
References
1

박성욱, 2020, Lansat 위성영상과 딥러닝을 이용한 산불 피해지 탐지, 부경대학교 석사학위논문.

2

이수진・김광진・김영호・김지원・이양원, 2017, "Sentinel-2 영상 기반의 FBI(Fire Burn Index) 개발 및 우리나라 산불피해지역 탐지 실험," 한국사진지리학회지, 27(4), 187-202.

10.35149/jakpg.2017.27.4.012
3

Buda, M., Maki, A. and Mazurowski, M. A., 2018, A systematic study of the class imbalance problem in convolutional neural networks, Neural Networks, 106, 249-259.

10.1016/j.neunet.2018.07.011
4

Chen, W., Moriya, K., Sakai, T., Koyama, L. and Cao, C. X., 2016, Mapping a burned forest area from Landsat TM data by multiple methods, Geomatics, Natural HaZards and Risk, 7(1), 384-402.

10.1080/19475705.2014.925982
5

Chiaraviglio, N., Artes, T., Bocca, R., Lopez, J., Gentile, A., Ayanz, J. S. M., Cortes, A. and Margelef, T., 2016, Automatic fire perimeter determination using MODIS Hotspots information, In 2016 IEEE 12th International Conference on e-Science, 414-423.

10.1109/eScience.2016.7870928
6

De Bem, P. P., Carvalho J. O. A., Carvalho, O. L. F., Gomes, R. A. T. and Guimaraes, R. F., 2020, Performance Analysis of Deep Convolutional Autoencoders with Different Patch Sizes for Change Detection from Burnt Areas, Remote Sensing, 12(16), 2576.

10.3390/rs12162576
7

Farasin, A., Colomba, L. and Garza, P., 2020, Double-step U-Net: a deep learning-based approach for the estimation of wildfire damage severity through Sentinel-2 satellite data, Applied Sciences, 10(12), 4332.

10.3390/app10124332
8

Hemes, K. S., Norlen, C. A., Wang, J. A., Goulden, M. L. and Field, C. B., 2023, The magnitude and pace of photosynthetic recovery after wildfire in California ecosystems, Proceedings of the National Academy of Sciences, 120(15), e2201954120.

10.1073/pnas.220195412037011220PMC10104501
9

Hu, X., Ban, Y. and Nascetti, A., 2021, Uni-temporal multispectral imagery for burned area mapping with deep learning, Remote Sensing, 13(8), 1509.

10.3390/rs13081509
10

Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santin, C., Kolden, C., Doerr, S. H. and Quere, C. L., 2022, Global and regional trends and drivers of fire under climate change, Reviews of Geophysics, 60(3), e2020RG000726.

10.1029/2020RG000726
11

Knopp, L., Wieland, M., Rattich, M. and Martinis, S., 2020, A deep learning approach for burned area segmentation with Sentinel-2 data, Remote Sensing, 12(15), 2422.

10.3390/rs12152422
12

Lee, C. H., Park, S. Y., Kim, T. H., Liu, S., Reba, M. N. M. Oh, J. H. and Han, Y. K., 2022, Machine learning-based forest burned area detection with various input variables: a case study of South Korea, Applied Sciences, 12(19), 10077.

10.3390/app121910077
13

Liu, S., Zheng, Y., Dalponte, M. and Tong, X., 2020, A novel fire index-based burned area change detection approach using Landsat-8 OLI data, European Journal of Remote Sensing, 53(1), 104-112.

10.1080/22797254.2020.1738900
14

Lopez-Garcia, M. J. and Caselles, V., 1991, Mapping burns and natural reforestation using thematic mapper data, Geocarto International, 6(1), 31-37.

10.1080/10106049109354290
15

Martins, V. S., Roy, D. P., Huang, H., Boschetti, L., Zhang, H. K. and Yan, L., 2022, Deep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope, Remote Sensing of Environment, 280, 113203.

10.1016/j.rse.2022.113203
16

Maxwell, A. E., Warner, T. A. and Guillen, L. A., 2021, Accuracy assessment in convolutional neural network- based deep learning remote sensing studies-part 1: literature review, Remote Sensing, 13(13), 2450.

10.3390/rs13132450
17

Muraina, I. O., 2022, Ideal dataset splitting ratios in machine learning algorithms: general concerns for data scientists and data analysis, In 7th International Mardin Artuklu Scientific Researchers Conference, Mardin, Turkey, 496-504.

18

Oliva, P. and Schroeder, W., 2015, Assessment of VIIRS 375m active fire detection product for direct burned area mapping, Remote Sensing of Environment, 160, 144- 155.

10.1016/j.rse.2015.01.010
19

Ronneberger, O., Fischer, P., Brox, T., 2015, U-Net: convolutional networks for biomedical image segmentation, in Navab, N., Hornegger, J., Wells, W. and Frangi, A.(eds), Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, MICCAI 2015, Lecture Notes in Computer Science, Vol 9351. Springer, Cham. doi: 10.1007/978-3-319-24574-4_28.

10.1007/978-3-319-24574-4_28
20

Seydi, S. T., Hasanlou, M. and Chanussot, J., 2022, Burnt-net: wildfire burned area mapping with single post-fire Sentinel-2 data and deep learning morphological neural network, Ecological Indicators, 140, 108999.

10.1016/j.ecolind.2022.108999
21

Shirvani, Z., Abdi, O. and Goodman, R. C., 2023, High-resolution semantic segmentation of woodland fires using residual attention UNet and time series of Sentinel-2, Remote Sensing, 15(5), 1342.

10.3390/rs15051342
22

United Nations Environment Programme, 2023, Emissions Gap Report 2023: Broken Record - Temperatures Hit New Highs, Yet World Fails to Cut Emissions (again), Nairobi. doi: 10.59117/20.500.11822/43922.

10.59117/20.500.11822/43922
23

Urbanski, S., 2014, Wildland fire emissions, carbon, and climate: emission factors, Forest Ecology and Management, 317, 51-60.

10.1016/j.foreco.2013.05.045
Information
  • Publisher :The Korean Geographical Society
  • Publisher(Ko) :대한지리학회
  • Journal Title :Journal of the Korean Geographical Society
  • Journal Title(Ko) :대한지리학회지
  • Volume : 59
  • No :2
  • Pages :283-294
  • Received Date : 2024-04-03
  • Revised Date : 2024-04-22
  • Accepted Date : 2024-04-24