All Issue

2023 Vol.58, Issue 6 Preview Page

Research Article

31 December 2023. pp. 585-598
Abstract
References
1
김경섭・정윤재・전병운, 2022, "Sentinel-2 위성영상과 강우 및 토양자료를 활용한 벼 수량 예측," 한국지리정보학회지, 25(1), 133-149.
2
농촌진흥청 국립식량과학원, 2022, 새만금 농생명용지 5공구 토양 화학성 조사.
3
박종화・나상일・이규호・백신철・김형섭, 2010, 농작물 생산통계의 원격탐사기술 활용방안 연구, 통계청.
4
새만금개발청, 2014, 새만금 기본계획.
5
새만금개발청, 단계별 개발계획, https://www.saemangeum. go.kr/sda/content.do?key=2108029121381, 2023년 6월 23일 접속.
6
오창환・김재병・한승우・오동필・김강주, 2020, 새만금 수질 평가 및 개선방향 제시를 위한 연구용역 보고서, 전북대 지구환경과학과 지구환경시스템 연구소.
7
조경숙・윤진일, 1999, "일기상자료에 의한 읍면별 벼 작황진단 및 쌀 생산량 예측," 한국농림기상학회지, 1(1), 1-10.
8
조수빈・윤유정・김서연・정예민・김근아・강종구・이양원, 2021, "우리나라 시군단위 벼 수확량 예측을 위한 다종 기상자료의 비교평가," 대한원격탐사학회지, 37(2), 337-357.
9
홍석영・허지나・안중배・이지민・민병걸・이충근・김이현・이경도・김선화・김건엽・심교문, 2012, "MODIS NDVI와 기상자료를 이용한 우리나라 벼 수량 예측," 대한원격탐사학회지, 28(5), 509-520. 10.7780/kjrs.2012.28.5.4
10
Bhojani, S. H. and Bhatt, N., 2020, Wheat crop yield prediction using new activation functions in neural network, Neural Computing and Applications, 32, 13941-13951. 10.1007/s00521-020-04797-8
11
Bouman, B. A., Humphreys, E., Tuong, T. P. and Barker, R., 2007, Rice and water, Advances in Agronomy, 92, 187-237. 10.1016/S0065-2113(04)92004-4
12
Cao, J., Zhang, Z., Luo, Y., Zhang, L., Zhang, J., Li, Z. and Tao, F., 2021, Wheat yield predictions at a county and field scale with deep learning, machine learning, and google earth engine, European Journal of Agronomy, 123, 126204. 10.1016/j.eja.2020.126204
13
Chandrasekar, K., Sesha Sai, M. V. R., Roy, P. S., and Dwevedi, R. S., 2010, Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS vegetation index product, International Journal of Remote Sensing, 31(15), 3987-4005. 10.1080/01431160802575653
14
Dehni, A. and Lounis, M., 2012, Remote sensing techniques for salt affected soil mapping: application to the Oran region of Algeria, Procedia Engineering, 33, 188-198. 10.1016/j.proeng.2012.01.1193
15
Filippi, P., Jones, E. J., Wimalathunge, N. S., Somarathna, P. D., Pozza, L. E., Ugbaje, S. U., Jephcott, T. G., Paterson, S. E., Whelan, B. M. and Bishop, T. F., 2019, An approach to forecast grain crop yield using multi- layered, multi-farm data sets and machine learning, Precision Agriculture, 20, 1015-1029. 10.1007/s11119-018-09628-4
16
Jeong, S., Ko, J. and Yeom, J. M., 2022, Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea, Science of The Total Environment, 802, 149726. 10.1016/j.scitotenv.2021.14972634464811
17
Ji, B., Sun, Y., Yang, S., and Wan, J., 2007, Artificial neural networks for rice yield prediction in mountainous regions, The Journal of Agricultural Science, 145(3), 249-261. 10.1017/S0021859606006691
18
Khaki, S. and Wang, L., 2019, Crop yield prediction using deep neural networks, Frontiers in Plant Science, 10, 621. 10.3389/fpls.2019.0062131191564PMC6540942
19
Maimaitijiang, M., Sagan, V., Sidike, P., Hartling, S., Esposito, F. and Fritschi, F. B., 2020, Soybean yield prediction from UAV using multimodal data fusion and deep learning, Remote Sensing of Environment, 237, 111599. 10.1016/j.rse.2019.111599
20
Muruganantham, P., Wibowo, S., Grandhi, S., Samrat, N. H. and Islam, N., 2022, A systematic literature review on crop yield prediction with deep learning and remote sensing, Remote Sensing, 14(9), 1990. 10.3390/rs14091990
21
Nguyen, K. A., Liou, Y. A., Tran, H. P., Hoang, P. P. and Nguyen, T. H., 2020, Soil salinity assessment by using near-infrared channel and vegetation soil salinity index derived from Landsat 8 OLI data: a case study in the Tra Vinh Province, Mekong Delta, Vietnam, Progress in Earth and Planetary Science, 7, 1-16. 10.1186/s40645-019-0311-0
22
Paudel, D., Boogaard, H., de Wit, A., Janssen, S., Osinga, S., Pylianidis, C. and Athanasiadis, I. N., 2021, Machine learning for large-scale crop yield forecasting, Agricultural Systems, 187, 103016. 10.1016/j.agsy.2020.103016
23
Saravi, B., Nejadhashemi, A. P. and Tang, B., 2020, Quantitative model of irrigation effect on maize yield by deep neural network, Neural Computing and Applications, 32, 10679-10692. 10.1007/s00521-019-04601-2
24
Son, N. T., Chen, C. F., Chen, C. R., Minh, V. Q. and Trung, N. H., 2014, A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation, Agricultural and Forest Meteorology, 197, 52-64. 10.1016/j.agrformet.2014.06.007
25
Sridevi, V. and Chellamuthu, V., 2015, Impact of weather on rice - a review, International Journal of Applied Research, 1(9), 825-831.
26
Van Klompenburg, T., Kassahun, A. and Catal, C., 2020, Crop yield prediction using machine learning: a systematic literature review, Computers and Electronics in Agriculture, 177, 105709. 10.1016/j.compag.2020.105709
Information
  • Publisher :The Korean Geographical Society
  • Publisher(Ko) :대한지리학회
  • Journal Title :Journal of the Korean Geographical Society
  • Journal Title(Ko) :대한지리학회지
  • Volume : 58
  • No :6
  • Pages :585-598
  • Received Date : 2023-09-25
  • Revised Date : 2023-11-09
  • Accepted Date : 2023-11-27