Research Article
김지우・이건학, 2017, "웹기반 데이터 시각화 도구를 활용한 플로우 데이터의 지리적 시각화 기법 탐색," 한국지도학회지, 17(1), 25-39.
10.16879/jkca.2017.17.1.025김지우・이건학, 2022, "지하철 시설 구조를 고려한 서울시 지하철 네트워크의 취약성 평가," 대한지리학회지, 57(4), 411-424.
10.22776/kgs.2022.57.4.411김지윤・최예은・김선웅・이건학, 2023, "MCLP 모델을 이용한 서울시 안심귀가 서비스의 만남 거점 최적화," 한국도시지리학회지, 26(1), 133-148.
10.21189/JKUGS.26.1.9박용하, 2021, "중력 모형을 이용한 국제항공 네트워크와 GaWC 세계도시 분류 체계 간 연관성 탐색," 한국지리학회지, 10(1), 119-137.
10.25202/JAKG.10.1.8서용훈・이건학, 2023, "GWR 기반 대시매트릭 매핑 기법을 이용한 건물 단위 현재 인구 추정," 한국지도학회지, 23(1), 21-34.
10.16879/jkca.2023.23.1.021심지윤・박경아・이재현, 2022, "동대구역 복합환승센터 개소 전후 철도 네트워크 중심성 변화 분석: PageRank Centrality를 중심으로," 대한교통학회지, 40(5), 669-682.
10.7470/jkst.2022.40.5.669이재건・손정렬, 2021, "COVID-19 대유행기에 나타난 서울시 고령층의 통행격차-사회경제적 요인과 공간적 요인에 따른 목적지 다변화의 차이를 중심으로," 지역연구, 37(4), 75-93.
임수영, 2024, Spatiotemporal Analysis for Travel Patterns of the Shared Bicycle Using Explainable Machine Learning Approach, 서울대학교 석사학위논문.
임승빈・김태우・전재연・권준현・고준호・이수기, 2025, "수도권 GTX 노선 도입이 접근성 변화에 미치는 영향 분석," 국토계획, 60(1), 87-103.
10.17208/jkpa.2025.02.60.1.87Alessandretti, L., Orozco, L. G. N., Saberi, M., Szell, M. and Battiston, F., 2023, Multimodal urban mobility and multilayer transport networks, Environment and Planning B: Urban Analytics and City Science, 50(8), 2038-2070.
10.1177/23998083221108190An, D., Tong, X., Liu, K. and Chan, E. H., 2019, Understanding the impact of built environment on metro ridership using open source in Shanghai, Cities, 93, 177-187.
10.1016/j.cities.2019.05.013An, R., Wu, Z., Tong, Z., Qin, S., Zhu, Y. and Liu, Y., 2022, How the built environment promotes public transportation in Wuhan: a multiscale geographically weighted regression analysis, Travel Behaviour and Society, 29, 186-199.
10.1016/j.tbs.2022.06.011Borgatti, S. P., 2005, Centrality and network flow, Social Networks, 27(1), 55-71.
10.1016/j.socnet.2004.11.008Brin, S. and Page, L., 1998, The anatomy of a large-scale hypertextual web search engine, Computer Networks and ISDN Systems, 30, 107-117.
10.1016/S0169-7552(98)00110-XCardozo, O. D., García-Palomares, J. C. and Gutiérrez, J., 2012, Application of geographically weighted regression to the direct forecasting of transit ridership at station-level, Applied Geography, 34, 548-558.
10.1016/j.apgeog.2012.01.005Cascajo, R., Lopez, E., Herrero, F. and Monzon, A., 2019, User perception of transfers in multimodal urban trips: a qualitative study, International Journal of Sustainable Transportation, 13(6), 393-406.
10.1080/15568318.2018.1476632Cervero, R. and Kockelman, K., 1997, Travel demand and the 3Ds: density, diversity, and design, Transportation Research Part D: Transport and Environment, 2(3), 199-219.
10.1016/S1361-9209(97)00009-6Chakour, V. and Eluru, N., 2016, Examining the influence of stop level infrastructure and built environment on bus ridership in Montreal, Journal of Transport Geography, 51, 205-217.
10.1016/j.jtrangeo.2016.01.007Chen, E., Ye, Z., Wang, C. and Zhang, W., 2019, Discovering the spatio-temporal impacts of built environment on metro ridership using smart card data, Cities, 95, 102359.
10.1016/j.cities.2019.05.028Cui, B., DeWeese, J., Wu, H., King, D. A., Levinson, D. and El-Geneidy, A., 2022, All ridership is local: accessibility, competition, and stop-level determinants of daily bus boardings in Portland, Oregon, Journal of Transport Geography, 99, 103294.
10.1016/j.jtrangeo.2022.103294De Gruyter, C., Ma, L., Saghapour, T. and Dodson, J., 2020, How does the built environment affect transit use by train, tram and bus?, Journal of Transport and Land Use, 13(1), 625-650.
10.5198/jtlu.2020.1739De Montis, A., Barthélemy, M., Chessa, A. and Vespignani, A., 2007, The structure of interurban traffic: a weighted network analysis, Environment and Planning B: Planning and Design, 34(5), 905-924.
10.1068/b32128Ewing, R. and Cervero, R., 2001, Travel and the built environment: a synthesis, Transportation Research Record, 1780(1), 87-114.
10.3141/1780-10Fagiolo, G., 2007, Clustering in complex directed networks, Physical Review E, 76(2), 1-16.
10.1103/PhysRevE.76.02610717930104Flyvbjerg, B., Holm, M., K., S. and Buhl, S. L., 2005, How (in) accurate are demand forecasts in public works projects?: The case of transportation, Journal of the American Planning Association, 71(2), 131-146.
10.1080/01944360508976688Fotheringham, A. S. and O'Kelly, M. E., 1989, Spatial Interaction Models: Formulations and Applications, Kluwer Academic Publishers, Boston.
Garcia-Martinez, A., Cascajo, R., Jara-Diaz, S. R., Chowdhury, S. and Monzon, A., 2018, Transfer penalties in multimodal public transport networks, Transportation Research Part A: Policy and Practice, 114, 52-66.
10.1016/j.tra.2018.01.016Göransson, J. and Andersson, H., 2023, Factors that make public transport systems attractive: a review of travel preferences and travel mode choices, European Transport Research Review, 15(1), 1-14.
10.1186/s12544-023-00609-xGuerra, E., Cervero, R. and Tischler, D., 2012, Half-mile circle: does it best represent transit station catchments?, Transportation Research Record, 2276(1), 101-109.
10.3141/2276-12Hilbe, J. M., 2011, Negative Binomial Regression, Cambridge University Press, New York.
10.1017/CBO9780511973420Hoffmann, J. P., 2016, Regression Models for Categorical, Count, and Related Variables: An Applied Approach, University of California Press, Oakland.
10.1525/9780520965492Kim, K., Kwon, K. and Horner, M. W., 2021, Examining the effects of the built environment on travel mode choice across different age groups in seoul using a random forest method, Transportation Research Record, 2675 (8), 670-683.
10.1177/03611981211000750Kopsidas, A., Douvaras, A. and Kepaptsoglou, K., 2023, Exploring the association between network centralities and passenger flows in metro systems, Applied Network Science, 8(1), 69.
10.1007/s41109-023-00583-2Li, P., Chen, X., Lu, W., Wang, H. and Yu, L., 2024, Built environment's non-linear impact on subway passenger flow through improved interpretable machine learning, Transportation Research Record: Journal of the Transportation Research Board, Online First, doi: 10.1177/03611981241287.
10.1177/03611981241287535Luo, D., Cats, O. and van Lint, H., 2020, Can passenger flow distribution be estimated solely based on network properties in public transport systems?, Transportation, 47, 2757-2776.
10.1007/s11116-019-09990-wMa, X., Zhang, J., Ding, C. and Wang, Y., 2018, A geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridership, Computers, Environment and Urban Systems, 70, 113-124.
10.1016/j.compenvurbsys.2018.03.001Mehdizadeh, M. and Klöckner, C. A., 2024, How emerging modes might change (sustainable) mobility patterns, Transportation Research Part D: Transport and Environment, 134, 104340.
10.1016/j.trd.2024.104340Navarrete, F. J. and de Dios Ortúzar, J. D., 2013, Subjective valuation of the transit transfer experience: the case of Santiago de Chile, Transport Policy, 25, 138-147.
10.1016/j.tranpol.2012.10.006Oeschger, G., Carroll, P. and Caulfield, B., 2020, Micromobility and public transport integration: the current state of knowledge, Transportation Research Part D: Transport and Environment, 89, 102628.
10.1016/j.trd.2020.102628Pun, L., Zhao, P. and Liu, X., 2019, A multiple regression approach for traffic flow estimation, IEEE Access, 7, 35998-36009.
10.1109/ACCESS.2019.2904645Schakenbos, R., La Paix, L., Nijenstein, S. and Geurs, K. T., 2016, Valuation of a transfer in a multimodal public transport trip, Transport Policy, 46, 72-81.
10.1016/j.tranpol.2015.11.008Schneider, F., Ton, D., Zomer, L., Daamen, W., Duives, D., Hoogendoorn-Lanser, S. and Hoogendoorn, S., 2021, Trip chain complexity: a comparison among latent classes of daily mobility patterns, Transportation, 48, 953-975.
10.1007/s11116-020-10084-1Seaborn, C., Attanucci, J. and Wilson, N. H., 2009, Analyzing multimodal public transport journeys in London with smart card fare payment data, Transportation Research Record, 2121(1), 55-62.
10.3141/2121-06Sun, H., Zhen, F. and Jiang, Y., 2020, Study on the characteristics of urban residents' commuting behavior and influencing factors from the perspective of resilience theory: theoretical construction and empirical analysis from Nanjing, China, International Journal of Environmental Research and Public Health, 17(5), 100537.
10.3390/ijerph1705147532106500PMC7084532Tobler, W. R., 1970, A computer movie simulating urban growth in the Detroit region, Economic Geography, 46(sup1), 234-240.
10.2307/143141Tu, W., Cao, R., Yue, Y., Zhou, B., Li, Q. and Li, Q., 2018, Spatial variations in urban public ridership derived from GPS trajectories and smart card data, Journal of Transport Geography, 69, 45-57.
10.1016/j.jtrangeo.2018.04.013UN, 1980, Final Act of the united nations conference on a convention on international multimodal transport of goods, United Nations Conference on a Convention on International Multimodal Transport, New York.
Wang, W., Wang, Y., Correia, G. H. D. A. and Chen, Y., 2020, A network‐based model of passenger transfer flow between bus and metro: an application to the public transport system of Beijing, Journal of Advanced Transportation, 2020(1), 6659931.
10.1155/2020/6659931Wang, Z. J., Liu, Y. and Chen, F., 2018, Evaluation and improvement of the interchange from bus to metro using smart card data and GIS, Journal of Urban Planning and Development, 144(2), 05018004.
10.1061/(ASCE)UP.1943-5444.0000435Wu, P., Xu, L., Zhong, L., Gao, K., Qu, X. and Pei, M., 2022, Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations, Journal of Transport Geography, 104, 103415.
10.1016/j.jtrangeo.2022.103415Xin, R., Ai, T., Ding, L., Zhu, R. and Meng, L., 2022, Impact of the COVID-19 pandemic on urban human mobility: a multiscale geospatial network analysis using New York bike-sharing data, Cities, 126, 103677.
10.1016/j.cities.2022.10367735345426PMC8942724Zhao, J., Deng, W., Song, Y. and Zhu, Y., 2013, What influences metro station ridership in China? Insights from Nanjing, Cities, 35, 114-124.
10.1016/j.cities.2013.07.002Zhao, S., Zhao, P. and Cui, Y., 2017, A network centrality measure framework for analyzing urban traffic flow: a case study of Wuhan, China, Physica A: Statistical Mechanics and its Applications, 478, 143-157.
10.1016/j.physa.2017.02.069MBC, 2023년 5월 15일 입력, [현장검증] 여행자들만 타는 줄 알았는데‥인천공항철도까지 '지옥철'?, https://imnews.imbc.com/replay/2023/nwdesk/article/6483903_36199.html, 2025년 3월 30일 접속.
- Publisher :The Korean Geographical Society
- Publisher(Ko) :대한지리학회
- Journal Title :Journal of the Korean Geographical Society
- Journal Title(Ko) :대한지리학회지
- Volume : 60
- No :2
- Pages :197-214
- Received Date : 2025-03-30
- Revised Date : 2025-04-22
- Accepted Date : 2025-04-22
- DOI :https://doi.org/10.22776/kgs.2025.60.2.197