Research Article
강전영・황철수, 2022, "GIS 및 공간 분석 연구의 재현성 (Reproducibility) 및 반복가능성 (Replicability)-대한지리학회지를 사례로." 대한지리학회지, 57(5), 425-435.
김민준・강전영, 2022, "서울시의 도시홍수 관련 임시대피시설의 공간적 분포 탐색," 국토지리학회지, 56(3), 235-244.
10.22905/kaopqj.2022.56.3.7김석태, 2018, "보행자 기반 이산사건 시뮬레이션을 이용한 건강검진센터 공간서비스 개선에 관한 연구," 한국실내디자인학회 논문집, 27(5), 53-65.
10.14774/JKIID.2018.27.5.053김수빈・이승연・김민주・이창규・강전영, 2024, "에이전트 기반 모델링을 활용한 소아・청소년 의료 서비스 취약지 분석 -서울 서남권 4개 자치구를 대상으로," 대한지리학회지, 59(2), 196-209.
이재길・박정욱, 2013, "다중 행위자 기반모형(Multi-Agent Based Model)을 이용한 보행자 마찰지표 산정에 관한 연구 - Netlogo 시뮬레이션 모형을 중심으로 -," 교통연구, 20(4), 105-116.
10.34143/jtr.2013.20.4.105이창규・최진무, 2021, "도로망 형태에 따른 네트워크 구조와 최단 경로 탐색 알고리즘 선정," 대한공간정보학회지, 29(2), 53-61.
10.7319/kogsis.2021.29.2.053정영준・조일연・이정우・김범호・이성호・임창규・이천희・백의현・진기성・김영철・이상민・최민석・김태호・장민주・김산옥・김혜경・정승준・이선영・안주혁, 2021, "디지털트윈 기술의 도시 정책 활용 사례 (세종시 도시행정 디지털트윈 프로젝트를 중심으로)," [ETRI] 전자통신동향분석, 36(2), 43-55.
Barker, A. K., Alagoz, O. and Safdar, N., 2018, Interventions to reduce the incidence of hospital-onset Clostridium difficile infection: an agent-based modeling approach to evaluate clinical effectiveness in adult acute care hospitals, Clinical Infectious Diseases, 66(8), 1192-1203.
10.1093/cid/cix96229112710PMC5888988Bastarianto, F. F., Hancock, T. O., Choudhury, C. F. and Manley, E., 2023, Agent-based models in urban transportation: review, challenges, and opportunities, European Transport Research Review, 15(1), 19.
10.1186/s12544-023-00590-5Batty, M., 2001, Agent-based pedestrian modeling, Environment and Planning B: Planning and Design, 28(3), 321-326.
10.1068/b2803edBatty, M. and Longley, P. A., 1986, The fractal simulation of urban structure, Environment and Planning A,18(9), 1143-1179.
10.1068/a181143Benenson, I. and Torrens, P., 2004, Geosimulation: Automata- Based Modeling of Urban Phenomena, John Wiley & Sons, Hoboken, New Jersey, United States.
10.1002/0470020997PMC454388Briem, L., Mallig, N. and Vortisch, P., 2019, Creating an integrated agent-based travel demand model by combining mobiTopp and MATSim, Procedia Computer Science, 151, 776-781.
10.1016/j.procs.2019.04.105Chao, D. L., Halstead, S. B., Halloran, M. E. and Longini Jr, I. M., 2012, Controlling dengue with vaccines in Thailand, PLoS Neglected Tropical Diseases, 6(10), e1876.
10.1371/journal.pntd.000187623145197PMC3493390Chen, X., Meaker, J. W. and Zhan, F. B., 2006, Agent-based modeling and analysis of hurricane evacuation procedures for the Florida Keys, Natural Hazards, 38, 321-338.
10.1007/s11069-005-0263-0Choi, M. and Hohl, A., 2021, Investigating spatiotemporal indoor contact patterns using ABM and STKDE, In Proceedings of the 4th ACM SIGSPATIAL International Workshop on GeoSpatial Simulation, pp. 1-8.
10.1145/3486184.3491077Choi, M. and Hohl, A., 2023, Investigating factors in indoor transmission of respiratory disease through agent‐based modeling, Transactions in GIS, 27(6), 1794-1827.
10.1111/tgis.13099Choi, M., Cho, S. J. and Hwang, C. S., 2021, Relieving bottlenecks during evacuations using IoT devices and agent-based simulation, Sustainability, 13(16), 9465.
10.3390/su13169465Choi, M., Crooks, A., Wan, N., Brewer, S., Cova. T. and Hohl, A., 2024, Addressing equifinality in agent-based modeling: a sequential parameter space search method based on sensitivity analysis, International Journal of Geographical Information Science, 38(6), 1007-1034. DOI: 10.1080/13658816.2024.2331536.
10.1080/13658816.2024.2331536Clemen, T., Ahmady-Moghaddam, N., Lenfers, U. A., Ocker, F., Osterholz, D., Ströbele, J. and Glake, D., 2021, May, Multi-agent systems and digital twins for smarter cities, In Proceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, pp. 45-55.
10.1145/3437959.3459254Croatti, A., Gabellini, M., Montagna, S. and Ricci, A., 2020, On the integration of agents and digital twins in healthcare, Journal of Medical Systems, 44, 1-8.
10.1007/s10916-020-01623-532748066PMC7399680Crooks, A. T. and Hailegiorgis, A. B., 2014, An agent-based modeling approach applied to the spread of cholera, Environmental Modelling & Software, 62, 164-177.
10.1016/j.envsoft.2014.08.027Crooks, A. T. and Heppenstall, A. J., 2011, Introduction to agent-based modelling, in Heppenstall, A., Crooks, A., See, L. and Batty, M.(eds.), Agent-based Models of Geographical Systems, Springer Netherlands, Dordrecht.
10.1007/978-90-481-8927-4Crooks, A., 2023, Call for abstracts: geosimulations for addressing societal challenges, https://www.gisagents.org/2023/09/call-for-abstracts-geosimulations-for.html, 2024년 6월 20일 접속.
Crooks, A., Malleson, N., Manley, E. and Heppenstall, A., 2018, Agent-based modeling and geographical information systems. Geocomputation: A Practical Primer, SAGE Publications Ltd, Thousand Oaks, CA.
10.4135/9781529793543Dobler, C., Horni, A. and Axhausen, K. W., 2014, Integration of activity-based and agent-based models: recent developments for Tel Aviv, Israel, Arbeitsberichte Verkehrs-und Raumplanung, 1027.
Ge, J. and Polhill, J. G., 2016, Exploring the combined effect of factors influencing commuting patterns and CO2 emissions in aberdeen using an agent-based model, Journal of Artificial Societies and Social Simulation, 19(3), 11.
10.18564/jasss.3078Geanakoplos, J., Axtell, R., Farmer, D. J., Howitt, P., Conlee, B., Goldstein, J., Hendrey, M., Palmer, N. M. and Yang, C.-Y., 2012, getting at systemic risk via an agent-based model of the housing market, American Economic Review, 102(3), 53-58.
10.1257/aer.102.3.53Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J. and Railsback, S. F., 2010, The ODD protocol: a review and first update, Ecological Modelling, 221(23), 2760-2768.
10.1016/j.ecolmodel.2010.08.019Gurram, S., Stuart, A. L. and Pinjari, A. R., 2019, Agent-based modeling to estimate exposures to urban air pollution from transportation: exposure disparities and impacts of high-resolution data, Computers, Environment and Urban Systems, 75, 22-34.
10.1016/j.compenvurbsys.2019.01.002Haghpanah, F., Ghobadi, K. and Schafer, B. W., 2021, Multi- hazard hospital evacuation planning during disease outbreaks using agent-based modeling, International Journal of Disaster Risk Reduction, 66, 102632.
10.1016/j.ijdrr.2021.10263234660188PMC8507583Huang, Y., Guo, Z., Chu, H. and Sengupta, R., 2023, Evacuation simulation implemented by ABM-BIM of Unity in Students & Dormitory Based on Delay Time, ISPRS International Journal of Geo-Information, 12(4), 160.
10.3390/ijgi12040160Kang, J. Y. and Aldstadt, J., 2019a, Using multiple scale spatio-temporal patterns for validating spatially explicit agent-based models, International Journal of Geographical Information Science, 33(1), 193-213.
10.1080/13658816.2018.153512131695574PMC6834355Kang, J. Y. and Aldstadt, J., 2019b, Using multiple scale space-time patterns in variance-based global sensitivity analysis for spatially explicit agent-based models, Computers, Environment and Urban Systems, 75, 170-183.
10.1016/j.compenvurbsys.2019.02.00631728075PMC6855397Kang, J. Y. and Aldstadt, J., 2019c, Examining time-dependent effects of water, sanitation, and hygiene (WASH) interventions using an agent‐based model, Tropical Medicine & International Health, 24(8), 962-971.
10.1111/tmi.1328031199546Kang, J. Y. and Aldstadt, J., 2021, Using multiple scale space-time patterns to determine the number of replicates and burn-in periods in spatially explicit agent-based modeling of vector-borne disease transmission, ISPRS International Journal of Geo-Information, 10(9), 604.
10.3390/ijgi10090604Kang, J. Y., Michels, A., Crooks, A., Aldstadt, J. and Wang, S., 2022, An integrated framework of global sensitivity analysis and calibration for spatially explicit agent-based models, Transactions in GIS, 26(1), 100-128.
10.1111/tgis.12837Kaviari, F., Mesgari, M. S., Seidi, E. and Motieyan, H., 2019, Simulation of urban growth using agent-based modeling and game theory with different temporal resolutions, Cities, 95, 102387. DOI: 10.1016/j.cities.2019. 06.018.
10.1016/j.cities.2019.06.018Kerr, C., Stuart, R., Mistry, D., Abeysuriya, R., Rosenfeld, K., Hart, G., Nunez, R., Cohen, J., Selvaraj, P., Hagedorn, B., George, L., Jastzebski, M., Izzo, A., Fowler G., Palmer, A., Delport D., Scott, N., Kelly, S., Bennette, C., ... and Klein D., 2021, Covasim: an agent-based model of COVID-19 dynamics and interventions, PLOS Computational Biology, 17(7), e1009149.
10.1371/journal.pcbi.100914934310589PMC8341708Kieu, M., Nguyen, H., Ward, J. A. and Malleson, N., 2022, Towards real-time predictions using emulators of agent-based models, Journal of Simulation, 18(1), 29-46.
10.1080/17477778.2022.2080008Kim, J. and Kwan, M. P., 2021, How neighborhood effect averaging might affect assessment of individual exposures to air pollution: a study of ozone exposures in Los Angeles, Annals of the American Association of Geographers, 111(1), 121-140.
10.1080/24694452.2020.1756208Kim, K., Kaviari, F., Pant, P. and Yamashita, E., 2022, An agent-based model of short-notice tsunami evacuation in Waikiki, Hawaii, Transportation Research Part D: Transport and Environment, 105, 103239.
10.1016/j.trd.2022.103239Kim, J. S., Kavak, H., Rouly, C., Jin, H., Crooks, A., Pfoser, D., Wenk, C. and Zufle, A., 2020, Location-based social simulation for prescriptive analytics of disease spread. SIGSPATIAL Special, 12(1), 53-61.
10.1145/3404820.3404828Lee, S. M. and Pritchett, A. R., 2008, Predicting interactions between agents in agent-based modeling and simulation of sociotechnical systems, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38(6), 1210-1220.
10.1109/TSMCA.2008.2001059Liao, W., Zhang, J., Zheng, X. and Zhao, Y., 2017, A generalized validation procedure for pedestrian models, Simulation Modelling Practice and Theory, 77, 20-31.
10.1016/j.simpat.2017.05.002Malleson, N. and Evans, A., 2014, Agent-based models to predict crime at places, in Bruinsma, G. and Weisburd, D.(eds.), Encyclopedia of Criminology and Criminal Justice, Springer New York. doi: 10.1007/978-1-4614-5690-2_208.
Malleson, N., Minors, K., Kieu, L.-M., Ward, J. A., West, A. and Heppenstall, A., 2020, Simulating crowds in real time with agent-based modelling and a particle filter, Journal of Artificial Societies and Social Simulation, 23(3), 3. DOI: 10.18564/jasss.4266.
10.18564/jasss.4266Manley, E., Cheng, T., Penn, A. and Emmonds, A., 2014, A framework for simulating large-scale complex urban traffic dynamics through hybrid agent-based modelling, Computers, Environment and Urban Systems, 44, 27-36.
10.1016/j.compenvurbsys.2013.11.003Mao, L. and Bian, L., 2011, Agent-based simulation for a dual-diffusion process of influenza and human preventive behavior, International Journal of Geographical Information Science, 25(9), 1371-1388.
10.1080/13658816.2011.556121Mao, L., 2014, Modeling triple-diffusions of infectious diseases, information, and preventive behaviors through a metropolitan social network - an agent-based simulation, Applied Geography, 50, 31-39.
10.1016/j.apgeog.2014.02.00532287519PMC7124377Meisser, L., 2017, The code is the model, International Journal of Microsimulation, 10(3), 184-201.
10.34196/ijm.00169Nagel, K. and Schreckenberg, M., 1992, A cellular automaton model for freeway traffic, Journal de Physique I, 2(12), 2221-2229.
10.1051/jp1:1992277Rech, E. and Timpf, S., 2021, Simulating changing traffic flow caused by new bus route in Augsburg, In Proceedings of the 11th International Conference on Geographic Information Science, Polzan, Poland.
Shin, H. and Bithell, M., 2019, An agent-based assessment of health vulnerability to long-term particulate exposure in Seoul districts, Journal of Artificial Societies and Social Simulation, 22(1), 12.
10.18564/jasss.3940Shin, H. and Bithell, M., 2023, TRAPSim: an agent-based model to estimate personal exposure to non-exhaust road emissions in central Seoul, Computers, Environment and Urban Systems, 99, 101894.
10.1016/j.compenvurbsys.2022.101894Sonnenschein, T., Scheider, S., De Wit, G. A., Tonne, C. C. and Vermeulen, R., 2022, Agent-based modeling of urban exposome interventions: prospects, model architectures, and methodological challenges, Exposome, 2(1), osac009.
10.1093/exposome/osac00937811475PMC7615180Torrens, P. M. and Nara, A., 2007, Modeling gentrification dynamics: a hybrid approach, Computers, Environment and Urban Systems, 31(3), 337-361.
10.1016/j.compenvurbsys.2006.07.004Torrens, P. M., 2006, Geosimulation and its application to urban growth modeling. in Portugali, J.(ed.), Complex Artificial Environments: Simulation, Cognition and VR in the Study and Planning of Cities, Springer, Berlin/Heidelberg, Germany.
Vandewalle, R., Kang, J. Y., Yin, D. and Wang, S., 2019, Integrating CyberGIS-Jupyter and spatial agent-based modelling to evaluate emergency evacuation time, In proceedings of the 2nd ACM SIGSPATIAL international workshop on GeoSpatial simulation, 28-31.
10.1145/3356470.3365530Wang, Y., Ge, J. and Comber, A., 2023, An agent-based simulation model of pedestrian evacuation based on bayesian nash equilibrium, Journal of Artificial Societies and Social Simulation, 26(3), 6.
10.18564/jasss.5037Wang. F., 2005, Agent-based control for networked traffic management systems, IEEE Intelligent Systems, 20(5), 92-96.
10.1109/MIS.2005.80Wilensky, U. and Rand, W., 2015, An Introduction to Agent-Based Modeling: Modeling Natural, social, and Engineered Complex Systems with NetLogo, Mit Press, Cambridge, Massachusetts, United States.
Wise, S., Crooks, A. and Batty, M., 2017, Transportation in agent-based urban modelling, InAgent Based Modelling of Urban Systems: First International Workshop, ABMUS 2016, Held in Conjunction with AAMAS, Singapore, Singapore, May 10, 2016, Revised, Selected, and Invited Papers 1, Springer International Publishing, New York City, New York, United States, 129-148.
10.1007/978-3-319-51957-9_8- Publisher :The Korean Geographical Society
- Publisher(Ko) :대한지리학회
- Journal Title :Journal of the Korean Geographical Society
- Journal Title(Ko) :대한지리학회지
- Volume : 59
- No :3
- Pages :417-430
- Received Date : 2024-04-04
- Revised Date : 2024-06-24
- Accepted Date : 2024-06-25
- DOI :https://doi.org/10.22776/kgs.2024.59.3.417