All Issue

2008 Vol.43, Issue 5 Preview Page
31 December 2008. pp. 761-774
Abstract
Integration of GIS data and human expert knowledge into digital image processing has long been acknowledged as a necessity to improve remote sensing image analysis. We propose inductive machine learning algorithm for GIS data integration and rule-based classification method for land cover classification. Proposed method is tested with a land cover classification of a Landsat ETM+ multispectral image and GIS data layers including elevation, aspect, slope, distance to water bodies, distance to road network, and population density. Decision trees and production rules for land cover classification are generated by C5.0 inductive machine learning algorithm with 350 stratified random point samples. Production rules are used for land cover classification integrated with unsupervised ISODATA classification. Result shows that GIS data layers such as elevation, distance to water bodies and population density can be effectively integrated for rule-based image classification. Intuitive production rules generated by inductive machine learning are easy to understand. Proposed method demonstrates how various GIS data layers can be integrated with remotely sensed imagery in a framework of knowledge base construction to improve land cover classification.
References
Sorry, not available.
Click the PDF button.
Information
  • Publisher :The Korean Geographical Society
  • Publisher(Ko) :대한지리학회
  • Journal Title :Journal of the Korean Geographical Society
  • Journal Title(Ko) :대한지리학회지
  • Volume : 43
  • No :5
  • Pages :761-774