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An Ensemble Machine Learning from Spatio-temporal Kriging 
for Imputation of PM10 in Seoul, Korea
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서울 미세먼지 데이터 결측대치를 위한 시공간 크리깅의 앙상블 머신러닝

송인상*·이창로**·박기호***

Abstract : Missing values in spatio-temporal data presumably cause defects, such that contaminate the results 
of spatio-temporal analyses. However, imputation methods for spatio-temporal data considering the inherent 
nature of spatio-temporal dependence have been neglected. We suggest an imputation algorithm based on en-
semble spatio-temporal kriging for particulate matter measurement data for the period 2010-2014 at 54 moni-
toring stations near the metropolitan city of Seoul, Korea. We review previous studies on imputation methods 
for spatio-temporal data, then shed light on the necessity of our approach. Our approach implements resam-
pling techniques on limited spatio-temporal data for a short-term period, then aims to enhance the imputation 
accuracy by taking the ensemble of the imputation results of resampled sub datasets. To examine such en-
hancement, we apply different conditions in experiments, including the number of resampling, neighborhood 
ratios, and ratios of artificially generated missing values. Results show that our approach outperforms both 
spatio-temporal kriging with the whole dataset (1.32~11.36%) and the linear regression-based imputation al-
gorithm (52% in average). Our results show that the learning approach by resampling is still effective in spatio-
temporal kriging in a limited environment as well as the spatio-temporal algorithm considering the inherent 
dependence among the data. But the considerable underperformance compared to the accuracy of the machine 
learning-based algorithm indicates the necessity of further examination of the effect of spatio-temporal depen-
dence in such an algorithm.
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요약 : 시공간 데이터의 결측치는 그 자체로 데이터의 결함으로서 시공간 분석 결과를 왜곡시킬 수 있다. 그러나 

시공간 데이터에 내재된 시공간 의존성을 이용한 결측대치 방법은 덜 주목받아 왔다. 이에 본 연구에서는 서울특

별시 및 근방의 54개 측정소로부터 2010년부터 2014년까지 5년간 측정된 시간별 미세먼지(PM10) 데이터의 결측

치를 대치하기 위하여 앙상블 시공간 크리깅 모형에 기초한 결측대치 모형을 제안하였다. 기존 연구들을 검토한 

결과, 본 연구에서 이용된 접근법의 필요성이 발견되었다. 본 연구가 제안하는 앙상블 결측대치 모형은 단기간의 

시공간 데이터에서 재표집(resampling)된 하위 데이터셋으로 복수의 시공간 크리깅 모형들을 적합하고, 이들을 

앙상블하여 결측대치 정확도를 높이고자 한다. 향상 여부를 실증하기 위하여 측정 데이터에 대해 결측대치 실험

을 실시하였다. 실험에서는 재표집 횟수, 시공간 크리깅 적합 시 이웃 비율, 결측 생성 비율 등 3요소에 대해 서로 
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1. Introduction

Missing values in spatio-temporal data are an obstacle 

to space-time analysis, as breaking the data makes it diffi-

cult to examine the change of spatial phenomenon1). This 

makes statistical reasoning for the whole study area more 

likely to be inaccurate than when using complete data. 

Also, the spatial analysis results may be biased when the 

spatial sample at a period with incomplete data contains 

properties that are different from those obtained from 

spatial samples. Most importantly, all observed values of 

spatio-temporal data are unique to a specific place and 

time, so even if the ratio of the missing values is small, the 

effect on the structure of the entire data could be signifi-

cant (Kondrashov and Ghil, 2006).

In this study, we applied a spatio-temporal kriging 

model for imputation to fill in the missing values in the 

particulate matter with aerodynamic diameters less than 

or equals to 10 μm (PM10). Missing measurements in 

air pollution data, possibly due to arbitrary deletion or 

functional failure of the measuring instrument, are limit-

ing factors in assessing the effects of short-term exposure 

to air pollution in health geography (Karahalios et al., 

2013). Spatio-temporal kriging is a method of model-

ing the temporally-augmented kriging that implements 

the space-time covariance function, which incorporates 

the temporal variability of variables. It has been widely 

applied since the 2000s (박노욱, 2011). The detailed 

methods will be described further in later sections of this 

paper.

The purpose of the imputation is to restore the original 

data as accurately as possible. Therefore, by adopting a 

strategy of model reinforcement, it is possible to improve 

the imputation accuracy. One of the methods that can 

be applied is the ensemble of models by resampling. 

The resampling method divides or randomly extracts 

the sampled data currently used, which is usually used 

for cross-validation or bootstrap aggregation (Breiman, 

1996). Focusing on the effect of an ensemble, we hy-

pothesized that the ensembled spatio-temporal kriging 

model would show better accuracy than both the kriging 

model without ensemble and other imputation tech-

niques. Therefore, the main purpose of this study is to 

identify two sub-hypotheses by using a resampling-based 

learning and a spatio-temporal kriging method to imple-

ment it into the imputation. First, we examine whether 

the spatio-temporal kriging model could be reinforced 

through the plug-in of the resampling method to spatio-

temporal kriging. Second, we compare the effects of 

spatio-temporal kriging of resampled data in comparison 

to existing methods.

2. Literature review

Bennett et al.(1984) comprehensively reviewed the 

missing value problems   in spatial data. The authors 

classified the causes of missing values in spatial data 

into three categories: spatial, temporal, and deletion 

다른 조건들을 적용하였다. 실험 결과, 제안된 앙상블 모형은 단일 시행 시공간 크리깅 모형(1.32~11.36%)과, 선

형 앙상블 모형(평균 52%)보다 높은 정확도로 결측치를 대치하였다. 본 결과는 제한된 환경에서 시공간 크리깅 모

형 앙상블이 결측 대치 정확도를 높이는 데 효과가 있음을 입증한다. 다만 제안된 알고리즘의 정확성은 머신러닝 

기반의 결측대치 알고리즘에 비해서 덜 우수했는데, 이 결과는 머신러닝 알고리즘에서 시공간 의존성 효과가 어

떻게 나타나는지에 대한 추가 연구 필요성을 제기한다.

주요어 : 결측대치, 시공간 크리깅, 재표집, 미세먼지
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processes. The problems of missing data in spatial data 

were divided into spatial and statistical aspects. Also, 

they proposed interpolation methods and spatial filtering 

techniques to fill the missing values in the spatial data. 

However, in their study, interpolation and imputation 

were used without any clear distinction, so the imputa-

tion methods were treated as a type of interpolation 

method.

Haining et al.(1989) suggested the processing of miss-

ing values using spatial models. They applied the first-

order conditional autoregressive model to the lattice data 

to perform the imputation. The main results showed that 

more effective dislocations are possible when reflecting 

the autocorrelation inherent in spatial data. This paper 

describes the necessity and validity of the method to im-

pute spatial data. Until the 1990s, missing data studies of 

spatial data were often done on raster data (Wilson et al., 

2012).

Several studies have used an array of spatial statistical 

techniques to impute missing values in data measured 

continuously in certain locations, such as climate or 

air pollution. Although the data used in the studies are 

spatio-temporal, studies have adopted the regression 

models or simple averaging (Smith et al., 2003; Xia et al., 

1999). A study applied multi-layer perceptron (MLP) and 

artificial neural network to combine the methodology of 

artificial intelligence into the context of imputation (Jun-

ninen et al., 2004).

Schneider(2001) focused on the spatio-temporal 

dimensions of missing values, then suggested the EM 

(Expectation-Maximization) algorithm which out-

performs the existing imputation methods. 김병식 등

(2011) reported that the inverse distance weighting and 

the correlation weighting method yielded reliable results 

compared to other imputation methods  in the rainfall 

data. Feng et al.(2014) developed a CUTOFF algorithm, 

which imputes the missing values in hydrologic measure-

ment data by filtering the measurement values accord-

ing to their correlation. Li and Parker(2014) applied the 

k-nearest neighbor algorithm as a method to impute the 

measurement data from sensor networks installed in 

various locations. They reported that the imputation er-

rors were lower than those of the EM algorithm. Deng 

et al.(2016) imputed the missing values  in the tempera-

ture and precipitation data with a method combining 

the cluster analysis and the space-time weighting. They 

considered spatio-temporal inverse distance weighting, 

spatio-temporal kriging, and spatio-temporal hybrid co-

variance model.

In previous studies, models ref lecting the inherent 

dependence in spatio-temporal data tended to show bet-

ter imputation performances than existing imputation 

models which do not consider spatial and/or temporal 

dimensions of data. However, as mentioned above, previ-

ous studies focused on comparing the performances of 

various algorithms. We aim to examine the effectiveness 

of training the spatio-temporal kriging model as a base 

learner in real-world data.

3. Methods

1) Spatio-temporal kriging

Spatio-temporal kriging is a model which incorporates 

components of purely temporal and interaction between 

spatial and temporal variations in kriging. When the 

variables show similar values according to spatial and 

temporal adjacency, the structure can be predicted and 

explained by the space-time covariance function. By us-

ing spatio-temporal kriging, we can estimate the possible 

values and their uncertainties at the unknown locations 

and time points based on the space-time structure of the 

sample (Cressie and Wikle, 2011). The spatio-temporal 

kriging is decomposed into five elements, which are ex-

pressed as follows (Wackernagel, 2003; Heuvelink and 

Griffith, 2010).
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Y(s, t)=μ(s, t)+β(s)+γ(t)+κ(s, t)+δ(s, t) (1)

Y(s, t): value at spatial position s and time point t

μ(s, t): mean estimate at spatial position s and time 

point t

β(s): random variation that depends on the site

γ(t): random variation that depends on the time point

κ(s, t): spatio-temporal interaction term

δ(s, t): spatio-temporal variability in a fine scale

s∈Ds, t∈Dt where Ds and Dt are spatial and temporal 

data set, respectively.

The formula (1) represents the decomposability of the 

value at time point t and spatial entity s into the sum 

of spatial, temporal, and residual processes. Assuming 

μ(s, t) is variable, the formula below corresponds to the 

formulation of ordinary kriging as follows (Cressie and 

Wikle, 2011).

Ŷ(s0, t0)=μ̂gls+c 0́Cz
−1(Z−μ̂gls1)= λ́ Z (2)

Ŷ(s0, t0): the estimated value(s) at spatial coordinate 

vector s0 and time point t0

μ̂gls: the mean estimate by generalized least squares

Z: a matrix with attribute values, coordinates, and 

time points

Cz=var(Z)

c 0́=cov(Y(s0; t0), Z)

λ: column vector with kriging weights

As the best fit procedure for kriging, spatio-temporal 

kriging requires theoretical spatio-temporal variograms, 

which are derived from the empirical spatio-temporal 

variograms. Theoretical spatio-temporal variograms are 

constructed by accounting for the interaction structure 

of spatial and temporal variability after fitting marginal 

variograms. Marginal variograms stand for variograms of 

each separate dimension when time lag and distance are 

respectively zero. 

Types of spatio-temporal semivariogram functions 

are listed in Table 1. The separable covariance function 

represents the spatio-temporal function as the product 

of spatial and temporal covariance functions. Thus, the 

spatial and temporal dimensions are fully independent. 

Other types of spatio-temporal covariance functions 

are suggested to substantiate the cases without fulfilling 

the independence across two dimensions. The product-

sum covariance function adds the covariance functions 

of each dimension to the product with scale parameter 

k. The metric covariance function requires the common 

Table 1. Types of spatio-temporal covariance and semivariogram functions and their theoretical formulae

Form Covariance and semivariogram formula

Separable
Cseparable(h, u)=Cs(h)Ct(u)

γ separable(h, u)=sill·(γ̄s(h)+γ̄ t(u)−γ̄s(h)γ̄ t(u))

Product-sum
Cproduct-sum(h, u)=kCs(h)Ct(u)+Cs(h)+Ct(u)

γproduct-sum(h, u)=(k·sillt+1)γs(h)+(k·sills+1)γt(u)−kγs(h)γt(u)

Metric
Cmetric(h, u)=Cjoint( h2+(κ ·u)2 )
γmetric(h, u)=γ joint( h2+(κ ·u)2 )

Sum-metric
Csum-metric(h, u)=Cs(h)+Ct(u)+Cjoint( h2+(κ ·u)2 )
γ sum-metric(h, u)=γs(h)+γt(u)+γ joint( h2+(κ ·u)2 )

C(.,.), Cs(.,.), Ct(.,.): spatio-temporal, spatial, and temporal covariance functions; γ(. , .): spatio-temporal (semi)variogram 
function; h: spatial distance or lag; u: time lag; sill: spatio-temporal sill; sills, sillt: sills for spatial and temporal dimensions; γ̄s, 
γ̄t: spatial and temporal (semi)variogram functions which are scaled to have the bound [0,1]. 
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metric which is interpretable for the integrated covari-

ance function, and thus it would model the spatio-

temporal covariance in a function rather than the three 

listed covariance models. The sum-metric covariance 

function incorporates the sums of spatial and temporal 

covariance functions and the metric covariance function. 

It should be noted that metric covariance functions could 

present by defining the combined spatio-temporal metric 

κ(kappa). The detailed process in calculating the metric 

is diversified by selecting a specific type of function trans-

lating the temporal lags into spatial distances, i.e., vario-

gram matching or calculating ratios of variogram values.

We defined all spatio-temporal variograms used to fit 

spatio-temporal kriging model as sum-metric. This is 

because sum-metric variograms are available to model 

empirical spatio-temporal variograms in a more flexible 

manner. Gräler et al.(2016) observed that sum-metric 

variograms show lower errors than variograms following 

other forms, especially in air quality monitoring data. 

For time and space marginal variograms of test sets, we 

chose theoretical variogram formulations that belong to 

Matérn or exponential families and showed the lowest 

sum of squared errors (for example, Figure 1). Also, we 

set the form of the composite spatio-temporal variogram 

as Gaussian for ease of computation. Finally, we placed 

regular spatial lag and its maximum as 1,000 meters and 

20,000 meters. To compare the imputation performance, 

we chose multiple imputation by chained equations 

(MICE) and missForest, which employs the ensemble 

machine learning algorithm random forest to examine 

the imputation accuracy. The imputation accuracy was 

evaluated with root mean squared error (RMSE) as 

shown in the formula below.

RMSE = (ŷi−yi)21
n

n
i=1∑  (3)

where ŷi is i th estimate and yi is the i th actual value in 

the dataset.

To note, the spatio-temporal anisotropy ratio (notated 

as κ; following Gräler et al., 2016) is determined with 

marginal variograms2). As we calculated the anisotropy 

ratio with spatial and temporal variograms, we gained 

computation efficiency by limiting ranges of candidate 

solutions with the minimum and maximum using em-

pirical variograms.

The proposed spatio-temporal kriging-based imputa-

tion approach follows as below:

a. Take the whole or partial spatio-temporal dataset 

with missing values;

b. Determine the theoretical spatio-temporal vario-

gram by the empirical spatio-temporal variogram of the 

dataset taken at the step a;

c. Split the dataset into N subdatasets after row-ran-

domization;

Figure 1. Graphical example of fitting a spatio-
temporal variogram model

Upper left: empirical spatio-temporal variogram 
Upper right: spatial and temporal marginal variograms (as 
ordered) 
Below: fitted sum-metric spatio-temporal variogram
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d. Initialize i as 1;

e. For i≤N, iterate:

f. Calculate the theoretical spatio-temporal variogram 

from N-1 subdatasets except for i th subdataset;

g. With the theoretical variogram of the step f, save the 

kriged estimates at places of the missing values;

h. Save the average of N kriged values as the imputed 

values.

The third step should be noted. The data becomes se-

quentially randomized, as this enables us to exclude the 

infl uence of temporal sequence embedded in the spatio-

temporal dataset. To explain, we could avoid the possibil-

ity of including or excluding data points at specifi c spatial 

or temporal extents. In step g, we calculate the average 

of imputed values from the resampled datasets, which 

is the ensemble approach for model estimates based on 

continuous variables (Opitz and Maclin, 1999; Kuhn 

and Johnson, 2013)3). Also, to emulate the actual perfor-

Table 2. Conditions of experiments

Conditions Values

Ratios of random missing generation

Maximum time lag

Number of resampling

Neighborhood ratio

As data, 5%, 10%, 20%

4~12 hours, 1 hour

3, 5, 10 times

75%, 100%

Figure 2. Locations of 54 monitoring stations near Seoul
Tabular source of locations from 국립환경과학원(2015); labels are station identifi ers.
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mance of our approach, we considered two conventional 

algorithms which represent either linear (simple, multiple 

imputation by chained equations)4) and machine learn-

ing (complex, missForest)5) approaches to compare the 

performances of each algorithm. Lastly, we tried apply-

ing several values for conditions of experiments to com-

pare the efficacy of each conditional value. Conditional 

values are listed in Table 2.

2) Data

We used the PM10 measurement data from Air Korea 

administered by the National Institute of Environmental 

Research. The data was automatically measured at 54 

monitoring stations around Seoul and was distributed 

after quality assessment (Figure 2, Korea Environment 

Corporation, 2018)6). The data includes monitoring sta-

tions adjacent to the administrative boundary of Seoul 

to avoid a possible edge effect. We checked the data 

consistency regarding the change in the location of moni-

toring stations to coherently analyze continuous spatio-

temporal distribution.

To apply the proposed imputation model, we extracted 

subdatasets from the five-year measurement data by 

the following standards: (a) temporal length equal to or 

greater than 24 hours; (b) no missing values in any of the 

54 monitoring stations. There were 17 sub datasets sub-

ject to such standards. Durations are between 24 to 60 

hours.

There are 1260.3 missing hours on average among 

43,824 hours in total for the study period, and their 

median was 1,191 hours per station. However, there is a 

significant decrement in the number of samples from all 

54 stations due to the missing values contained in the air 

pollution data. Only 73,291 (3.09%) out of 2,366,496 

hours are missing in the data, which is ignorable consid-

ering the studies on missing data (Harrell, 2015)7). When 

the spatial dimension of the dataset is considered, the 

ratio of missing values is significantly inflated such that 

10,981 (25.06%) out of 43,824 hours include complete 

measurement data from 54 monitoring stations. Accord-

ingly, it can be presumably expected that the results of 

spatial analysis such as interpolation using the incom-

plete data will be biased compared to those not using the 

incomplete data.

4. Results

1) Descriptive analysis

The missing values in the whole dataset show short 

and dispersed patterns, which comprise one or two hours 

except for some continuous missing values. The matrix 

plot illustrates the missing pattern visually by highlight-

ing the missing elements by color (see Figure S1 in the 

supplementary material). The data includes a few contin-

uous missing values in the time series, and missing values 

with lengths ranging from a few hours to several days are 

mainly seen in the period of device calibration done by 

the administrative authority. Test datasets show varied 

characteristics as observing their values (1-269), ranges 

(54-248), duration (24-60 hours), and standard devia-

tions (6.34-33.80) (Table 3). To measure the proximity 

among multiple time series in each dataset, we used the 

temporal correlation coefficient suggested by Chouakaria 

and Nagabhushan(2007), using the formula (4). We cal-

culated the sum of 1,431 (the number of 2-combinations 

from 54 time series, (54
2

)=54×53
2

) pairwise temporal 

dissimilarity of each dataset and normalized it by divid-

ing the range of values of each dataset to control the 

amount of values. We termed the final index mCORT 

(abbreviation of ‘mean dissimilarity coefficient of time 

series’), which values show 0.28-2.21 (Table 3).
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D(S1, S2)=2/(1+exp(2·CORT(S1, S2))·δconv(S1, S2) (4)

where CORT(S1, S2)= (ui+1−ui)(vi+1−vi)p-1
i=1∑ /

(ui+1−ui)2p-1
i=1∑ (vi+1−vi)2p-1

i=1∑

δconv(S1, S2)= (ui−vi)2p-1
i=1∑

ui and vi are the i th element of time series S1 and S2, re-

spectively.

2) Imputation results by missing ratios

To examine changes in model performances as pro-

portions of missing values vary, we experimented with 

varied missing ratios as the main data observed in 2010-

2014, 5, 10, 20, and 30 percent. We fixed the maximum 

time lag at six hours and the number of resampling at 

ten times in the experiment. Root mean squared errors 

(RMSE) of imputations tend to increase as the ratio 

becomes higher, and the increment of RMSE becomes 

smaller as the ratio exceeds 20 percent (Figure 3). Com-

paring the accuracy as the number of sampling increases, 

we observed that all results with resampling showed bet-

ter accuracy than those of kriging without resampling. 

Also, three or five times of resampling was the most effec-

tiveness for 16 out of 17 test datasets (Table 4).

The average RMSE was the minimum of the data with 

missing ratios observed in the entire dataset over a period 

of five years. This is because the average ratio of randomly 

generated missing values in all monitoring stations was 

about 3 percent, which is far lower than in other experi-

mental conditions. However, because of the variation in 

empirical missing ratios across monitoring stations, the 

Table 3. List of test datasets and their summary statistics

Set Begin End Duration Minimum Median Mean Maximum Range Stdev† CV‡ mCORT¶

1 12/31/2010 15:00 01/01/2011 15:00 25 22 49 49.48 94 72 11.78 0.24 1.61

2 03/12/2011 15:00 03/13/2011 22:00 32 26 64 65.71 146 120 16.40 0.25 1.58

3 07/16/2011 02:00 07/17/2011 07:00 30 1 17 17.77 69 68 8.31 0.47 1.93

4 08/14/2011 14:00 08/15/2011 19:00 30 9 49 48.81 104 95 14.67 0.30 0.88

5 01/22/2012 09:00 01/23/2012 20:00 36 6 31 31.26 74 68 8.70 0.28 1.53

6 03/03/2012 20:00 03/05/2012 01:00 30 2 17 17.61 63 61 6.34 0.36 1.33

7 03/09/2012 20:00 03/11/2012 17:00 46 5 36 39.06 91 85 17.27 0.44 0.91

8 03/24/2012 21:00 03/25/2012 22:00 26 10 42 55.61 185 175 33.80 0.61 0.28

9 05/04/2012 23:00 05/07/2012 10:00 60 24 61 71.54 219 195 31.06 0.43 0.77

10 02/02/2013 16:00 02/03/2013 15:00 24 5 27 28.00 59 54 8.56 0.31 1.37

11 02/23/2013 16:00 02/25/2013 01:00 34 4 47 47.99 110 106 16.47 0.34 0.99

12 05/12/2013 09:00 05/13/2013 10:00 26 55 103 102.80 177 122 18.13 0.18 1.44

13 07/06/2013 09:00 07/07/2013 10:00 26 29 65 66.17 119 90 14.41 0.22 1.36

14 02/22/2014 16:00 02/24/2014 11:00 44 51 107 112.46 269 248 29.54 0.26 1.15

15 04/06/2014 10:00 04/07/2014 11:00 26 17 60 56.61 115 98 18.71 0.33 0.73

16 04/12/2014 23:00 04/14/2014 09:00 35 40 76 78.51 135 95 14.34 0.18 2.21

17 07/12/2014 13:00 07/14/2014 03:00 39 22 59 59.85 119 97 13.26 0.22 1.32

† standard deviation; ‡ coefficient of variation; ¶ average pairwise dissimilarity of 54 time series in each dataset (following 
Chouakria and Nagabhushan, 2007)

Note: units of minimum, median, mean, maximum, and standard deviation are micrograms per cubic meter (μg/m3); unit of 
duration is hours.



- 435 -

An Ensemble Machine Learning from Spatio-temporal Kriging for Imputation of PM10 in Seoul, Korea

result shows variability in errors for each imputation. On 

the other hand, the range of RMSEs tends to decrease as 

the missing ratio increases except for in set 6. Along with 

observing the decrease in differences of RMSE, it can be 

suggested that the missing values in the spatio-temporal 

data change the spatio-temporal structure of the data and 

the transition of the structure to the new state as the error 

exceeds a certain level.

When the characteristics of each set shown in Table 2 

are considered together, it is observed that the decrease 

in the predictive performance against the missing ratio 

tends to increase as the time series patterns of the moni-

toring stations are different. In the case of mCORTs such 

as sets 1, 2, 3, 5, 10, 12, and 16, the increase in the RMSE 

was large as the error rate increased from 5% to 20%. On 

the other hand, the correlations between measurement 

points such as sets 8, 9, 14, and 15 are high, so even if the 

mCORT is small, the increase of the RMSE appears to 

be insignificant.

3)  Comparison to conventional imputation 

algorithms

The spatio-temporal kriging model with resampling is 

more accurate than the linear imputation model and has 

similar accuracy to the machine-learning algorithm (Fig-

ure 5). The variability of RMSE indicates the stability of 

the imputation algorithm. The variability of RMSEs for 

every imputation trial tended to show similar accuracy 

as that of the imputation, and the variation gradually 

increased in the order of missForest, spatio-temporal 

kriging (denoted as ST-kriging in Figure 5), and MICE. 

On the other hand, results of spatio-temporal kriging 

in the sets 1 and 5 showed high RMSEs in a few trials. 

This shows that the combined effect of the locations and 

time points of missing values affects the fitting of kriging 

models and their accuracy of the imputations (for de-

tailed results by datasets, see Table S1 in the supplemen-

tary material).

5. Discussion

To sum up all imputation results, the resampling-

based spatio-temporal kriging imputation approach 

showed applicable performance. This can be conceptu-

ally explained in two ways. First, the model takes into 

account the spatio-temporal dependency, which is 

implicit in the data. The spatio-temporal kriging-based 

imputation model performed predictions on a level 

comparable with the nonparametric machine learning-

based algorithm in terms of accuracy. We could find 

that taking unique structure into consideration helps to 

improve spatio-temporal analyses and modeling proce-

Table 4. Performance improvement in the change in 
RMSE compared to the single imputation by spatio-

temporal kriging unit: percent

Set
Number of resampling

3 5 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

7.38
1.65
2.73

5.00

11.36

4.68

2.55
3.99

2.25
7.08

1.07
1.32

0.88
1.04
3.98

1.54

5.97

7.54

2.40

1.64
4.83
9.71
4.15
3.13

3.67
2.55

6.81
1.66

1.19
1.37

1.85

3.53
1.26
6.43

6.56
1.79
0.93
4.02
5.70
2.45
1.70
3.46
1.24
5.21
1.10
0.74
1.28
0.87
1.32
0.66
4.39

The maximum improvements by sets are highlighted; 
missing ratio is ten percent.
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dures. The second conceptual explanation is the role of 

spatio-temporal kriging as a tool for understanding the 

dependence in the spatio-temporal data. Spatio-temporal 

variogram, which is a base tool for conducting spatio-

temporal kriging, can visualize the dependence in spatio-

temporal data. Accordingly, the proposed model is useful 

in understanding the model compared to the machine 

learning counterpart, of which the mechanism difficult 

to comprehend. 

However, the results suggest the need to clarify the 

ways in which the spatio-temporal aspects of the data 

affect the performance of machine learning algorithms. 

Since the results of missForest showed higher imputa-

tion accuracy and lower variation, it should be examined 

whether spatial and/or temporal dependence affects the 

model performance. This is because such examination 

could show the efficacy of consideration for implicit 

spatio-temporality in the data. When no spatial and/or 

temporal effects were observed in machine learning algo-

rithms, it could be hard to stress that the spatio-temporal 

dependencies should be accounted for modeling with 

data of spatial and/or temporal dimensions. In summa-

tion, results of this study demand further explanation of 

possible contributions of spatio-temporality in machine 

Figure 3. Ratio of missing data generation and RMSEs of imputation results
Numbers in the title of each vertical panel represent set numbers, whereas the title of horizontal panel shows the number 
of resampling; large symbols per missing ratio in each panel represents the average RMSE for 30 trials; small symbols are 
RMSEs of 30 trials.
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Figure 4. Average RMSE of 30 imputation results by the numbers of resampling 
Missing ratio is ten percent.

Figure 5. Comparison of RMSEs from the imputation results of three algorithms
For spatio-temporal kriging, the number of resampling for each dataset is fi ve and the missing ratio is ten percent.
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learning algorithms.

Lastly, we explored the residual space-time cube to 

check whether there is a spatio-temporal pattern in the 

imputation results. Figures 6 and 7 display the results of 

sets 8 and 16, which have the lowest and the highest tem-

poral correlations measured by mCORT, respectively. 

The results show that errors increase in outer points of 

the space-time cubes, which present the spatio-temporal 

edge effect. It would be partially explained by the fact 

that the available information around proximal points 

becomes scarce at the external positions in the space-time 

cube.

The result of the imputation accuracy evaluation, 

based on the number of resampling and the ratio of miss-

ing values, has signifi cant implications for both the anal-

ysis of the eff ect of missing values and the application of 

the imputation model for spatio-temporal data. First, the 

variance of the imputation accuracy gradually decreased 

as the number of resampling increased (Figure 3). This 

shows that the shape of spatio-temporal variogram of the 

data is gradually transformed as the missing rate increas-

es by adding higher variability on spatio-temporal vario-

gram. Second, scale dependency should be accounted for. 

It can be inferred from the applied conditions when we 

Figure 6. Space-time cubes of the set 8-3-1
Upper panel: the fi tted data after generating missing values, Lower panel: residuals after the imputation

Note: the number of resampling was fi ve; [ ] symbols represent ‘higher/lower than or equal to’, whereas ( ) symbols represent 
‘higher or lower than’; the numbers next to the ranges of residuals are the numbers of elements subject to each range.



- 439 -

An Ensemble Machine Learning from Spatio-temporal Kriging for Imputation of PM10 in Seoul, Korea

design spatio-temporal kriging models. We arbitrarily set 

spatial lag distance as 1,000 meters. Thus, this is one of 

the limitations of parametric theoretical spatio-temporal 

variogram models. We can see that further research is 

required to account for local variations flexibly, i.e. var-

iogram fitting with the piecewise linear model (Shapiro 

and Botha, 1991) or spatio-temporal hierarchical models, 

and Bayesian techniques, which consider variogram 

parameters to be distributions (Cressie and Wikle, 2011; 

Montero et al., 2015). Th e last to be noted is results of this 

study suggest the applicability of spatio-temporal kriging 

for imputation in the short-term and data with dispersed 

missing values. As the test sets have 24 to 60 hours of 

time span, the performance gains as the models are fi tted 

in other time scales (i.e., monthly or yearly scale) may 

not be observed. Also, as seen in Figure S1 in the supple-

mentary material, continuous missing values in PM10 

measurement data are present for longer than a few hours 

to even for a few weeks. This might destabilize spatio-

temporal variograms for resampled data such that cause 

underperformance of spatio-temporal kriging. We see 

that further studies will scrutinize such issues in diff erent 

data and study problems. 

6. Conclusion

This study suggested an imputation approach that 

hybridizes resampling techniques and spatio-temporal 

Figure 7. Space-time cubes of the set 16-3-1
Upper panel: the fi tted data after generating missing values, Lower panel: residuals after the imputation

Note: the number of resampling is fi ve.
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kriging for spatio-temporal data. The proposed approach 

was applied to impute missing values in 17 selected 

datasets from the PM10 measurement data of five years 

to test the effectiveness. Results are summarized as fol-

lows. First, our approach confirmed the accuracy gain 

by the ensemble of spatio-temporal kriging models for 

resampled sub datasets. It showed that RMSE decreased 

the most on average when each dataset was resampled 3-5 

times. This demonstrates that the resampling approach 

for spatio-temporal kriging can contribute to deal with 

the problems of missing values in spatio-temporal data. 

Second, our approach outperformed MICE, which is 

based on linear regression models, and showed similar 

performance to the machine learning based algorithm 

missForest. Moreover, our approaches gained an advan-

tage over the compared algorithms in both the explana-

tion of inherent spatio-temporal variability of the dataset 

and the enhancement of the imputation accuracy with 

resampling.

This study offers two contributions. First, we exam-

ined the effect of the combination of spatio-temporal 

kriging and the learning method, thus observing the ex-

pandability of spatio-temporal kriging by reinforcing the 

model from the data itself. Second, this study provided a 

perspective on the missing values in spatio-temporal data 

which have been undermined in geography and called 

forth the need for subsequent studies related to missing 

values. Nevertheless, there are several limitations in this 

study. We succeeded in suggesting a working example of 

our approach. However, there are challenges such as pro-

viding generalized examples that employ simulation ap-

proaches and mathematical foundations of the availabil-

ity of our approach. In addition, as the accuracy of the 

missForest was slightly higher than that of our approach, 

further research is needed to find how the machine 

learning algorithm reflects the inherent dependence of 

spatio-temporal data. As for the kriging methodology, 

it is necessary to follow up on the recent kriging method 

using the Bayesian approach, nonparametric approach, 

and efficient kriging algorithm for huge data.

Notes

1) Missing values mean the unmeasured values in data. In a wide 

sense, missing values are ‘no measured or reported values’ at 

which there are indices such as row and column numbers that 

had values therein, whereas the data has partial missing values 

which are directly related to the phenomena of interest in a 

narrow sense (Little and Rubin, 2002; McKnight et al., 2007).

2) There are four approaches to estimating the spatio-temporal 

anisotropy: ratio-linear, range, variogram, and metric. Such 

approaches vary in their ways of finding the optimal scaling 

method, which converts temporal units into spatial units and 

vice versa by matching the values of spatial and temporal mar-

ginal variograms (Gräler et al., 2016).

3) The procedure was compiled by adding functions for fitting 

spatio-temporal variograms automatically based on R (R Core 

Team, 2017) packages gstat (Pebesma, 2004), spacetime 

(Pebesma, 2012), and automap (Hiemstra et al., 2009).

4) Multiple imputation by chained equations is an imputation al-

gorithm employing chained equations to fill missing values in 

multivariate data (Schafer, 1997; van Buuren and Groothuis-

Oudshoorn, 2011).

5) missForest is an imputation algorithm which implements 

random forest, one of the machine learning algorithms (Steck-

hoven and Bühlmann, 2012).

6) 41 out of 54 monitoring stations are urban ambient stations 

whereas 13 stations are roadside stations. Urban ambient sta-

tions are established to measure the background level of air 

pollutants in cities, while roadside stations are installed near 

the major roads to monitor the effect of road traffic to the con-

centrations of air pollutants (국립환경과학원, 2015).

7) There were 1,826 days (365 days × 5 years +1 leap day) for the 

study period, such that there were 43,824 hours (24 hours × 

1,826 days) per monitoring station and 2,366,496 hours for 

54 monitoring stations (54 stations × 43,824 hours) in total.
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Figure S1. Matrix plot of missing values in the measurement data of 54 monitoring stations
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Table S1. Summary statistics of RMSEs by sets and imputation algorithms unit: μg/m3

Set Algorithm Mean Minimum Maximum SD

1
ST-kriging* 8.18 4.56 14.56 2.25
missForest 5.82 4.34 8.73 1.02

MICE 13.80 10.35 17.57 1.94

2
ST-kriging 11.75 6.44 17.22 2.79
missForest 8.34 6.79 10.07 0.92

MICE 22.17 18.59 28.46 2.70

3
ST-kriging 6.34 3.61 9.43 1.42
missForest 5.01 3.75 7.39 0.77

MICE 10.26 6.98 13.97 1.71

4
ST-kriging 8.46 5.44 13.43 1.74
missForest 7.27 5.69 8.58 0.78

MICE 17.87 15.16 22.88 1.87

5
ST-kriging 6.05 4.18 9.52 1.01
missForest 4.55 3.45 6.18 0.66

MICE 10.97 9.42 13.53 1.23

6
ST-kriging 4.41 3.25 5.86 0.75
missForest 3.81 2.75 5.08 0.53

MICE 8.12 5.30 11.44 1.25

7
ST-kriging 8.70 5.64 11.94 1.70
missForest 6.90 4.93 9.33 1.13

MICE 21.64 17.84 25.43 1.76

8
ST-kriging 10.98 5.70 17.46 3.33
missForest 7.84 5.43 11.67 1.44

MICE 45.90 34.33 59.77 5.73

9
ST-kriging 12.93 8.23 16.95 2.33
missForest 8.63 6.15 14.68 1.61

MICE 43.07 36.88 48.78 3.45

10
ST-kriging 6.15 3.74 10.62 1.46
missForest 4.90 2.98 6.40 0.89

MICE 10.27 8.38 12.46 1.25

11
ST-kriging 9.99 5.92 15.66 2.02
missForest 7.54 5.57 9.93 1.23

MICE 21.87 17.31 28.86 2.51

12
ST-kriging 10.74 5.05 17.12 3.09
missForest 6.60 4.91 7.85 0.84

MICE 26.36 19.31 35.61 3.61

13
ST-kriging 9.20 6.62 14.87 2.01
missForest 7.60 5.85 10.58 1.18

MICE 19.18 14.26 24.40 2.59

14
ST-kriging 16.11 8.25 26.16 4.10
missForest 8.86 6.41 11.55 1.25

MICE 36.01 29.81 41.63 3.21

15
ST-kriging 8.33 4.75 13.02 2.23
missForest 6.07 4.62 9.25 1.16

MICE 22.29 15.42 27.94 3.26

16
ST-kriging 11.93 7.72 16.32 2.20
missForest 7.79 6.08 9.78 0.93

MICE 18.64 13.83 20.77 1.68

17
ST-kriging 8.99 6.71 12.11 1.38
missForest 6.48 5.10 7.62 0.66

MICE 16.85 13.35 19.17 1.54

*ST-kriging: resampling-based spatio-temporal kriging, SD: standard deviation


