All Issue

2020 Vol.55, Issue 2

Research Article


April 2020. pp. 67-81
Abstract


References
1 

김연옥, 1987, 기후학개론, 개정판, 정익사.

2 

김용상ㆍ홍성길, 1996, “늦봄 또는 초여름에 영동지방에서 나타나는 “유사 푄” 현상에 관한 연구,” 한국기상학회지, 32, 593-600.

3 

김유미ㆍ김만규, 2013, “강원도 홍천지역의 푄 연구,” 대한지리학회지, 48, 37-55.

4 

김정훈ㆍ정일웅, 2006, “봄철 영동 지역 국지 하강풍 메커니즘과 지형 효과에 대한 연구,” 대기, 16, 67-83.

5 

안중배ㆍ김준ㆍ류찬수ㆍ박선기ㆍ서명석ㆍ이화운ㆍ정일웅ㆍ정형빈(역), 2016, 대기과학, 시그마프레스(Lutgens, F. K. and Tarbuck, E. J., 2016, The Atmosphere, 13th ed., Pearson Education, Inc).

6 

윤순옥ㆍ김영훈ㆍ김종연ㆍ다나카 유키야ㆍ박경ㆍ박병익ㆍ박정재ㆍ박지훈ㆍ박철웅ㆍ박충선ㆍ이광률ㆍ최광용ㆍ최영은ㆍ황상일(역), 2019, Kcknight의 자연지리학, 시그마프레스(Hess, D., 2017, McKnight's Physical Geography, 12th ed., Pearson Education, Inc).

7 

이승호, 2007, 기후학, 푸른길.

8 

이현영, 1994, “영서지방의 푄현상,” 대한지리학회지, 29, 266-280.

10.1093/cdj/29.3.280
9 

이혜경, 1992, 영서지방의 높새바람에 관한 연구, 건국대 대학원 석사학위논문.

10 

최광용, 2016, “한라산 지역 열역학적 푄 현상 발생 시 종관 기후 패턴,” 기후연구, 11, 313-330, doi:10.14383/cri.2016.11.4.313.

10.14383/cri.2016.11.4.313
11 

최성식ㆍ문승의ㆍ하창환, 1997, “높새풍의 기후학적 연구,” 한국기상학회지, 33, 349-361.

10.1016/S0140-6736(05)62866-8
12 

하현주, 1994, 영동지방에서 발생하는 국지 강풍 특성과 푀엔 현상과의 관련성 연구, 서울대학교 대학원 석사학위 논문.

13 

淺井富雄, 1996, ロ-カル氣象學, 東京大學出版會.

14 

Damiens, F., Lott, F., Millet, C. and Plougonven, R., 2018, An adiabatic foehn mechanism, Quarterly Journal of the Royal Meteorological Society, 144, 1369-1381, doi: 10.1002/qj.3272.

10.1002/qj.3272
15 

Drechsel, S. and Mayr, G. J., 2008, Objective forecasting of foehn winds for a subgrid-scale Alpine Valley, Weather and Forecasting, 23, 205-218, doi:10.1175/2007WAF2006021.1.

10.1175/2007WAF2006021.1
16 

Elvidge, A. D. and Renfrew, I. A., 2016, The causes of foehn warming in the lee of mountains, Bulletin of the American Meteorological Society, 97, 455-466, doi: 10.1175/BAMS-D-14-00194.1.

10.1175/BAMS-D-14-00194.1
17 

Elvidge, A. D., Renfrew, I. A., King, J., Orr, A., Lachlan-Cope, T. A., Weeks, M., and Gray, S. L., 2015, Foehn jets over the Larsen C Ice Shelf, Antarctica, Quarterly Journal of the Royal Meteorological Society, 141, 698-713, doi: 10.1002/qj.2382.

10.1002/qj.2382
18 

Elvidge, A. D., Renfrew, I. A., King, J. C., Orr, A., and Lachlan-Cope, T. A., 2016, Foehn warming distribution in nonlinear and linear flow regimes: A focus on the Antarctic Peninsula, Quarterly Journal of the Royal Meteorological Society, 142, 618-631, doi: 10.1002/qj.2489.

10.1002/qj.2489
19 

Hoinka, K. P., 1985, What is a foehn clearence?, Bulletin of the American Meteorological Society, 66, 1123-1132, doi: 10.1175/1520-0477(1985)066<1123:WIAFC>2.0.CO;2.

10.1175/1520-0477(1985)066<1123:WIAFC>2.0.CO;2
20 

Ikawa, M. and Nagasawa, Y., 1989, A numerical study of a dynamically induced foehn observed in the Abashiri-Ohmu area, Journal of the Meteorological Society of Japan, 67, 429-458.

10.2151/jmsj1965.67.3_429
21 

Mayr, G. J. and Armi, L., 2010, The influence of downstream diurnal heating on the descent of flows across the sierras, Journal of Applied Meteorology and Climatology, 49, 1906-1912, doi: 10.1175/2010JAMC2516.1.

10.1175/2010JAMC2516.1
22 

Mayr, G. J., Plavcan, D., Armi, L., Elvidge, A., Grisogono, B., Horvath, K., Jackson, P., Neururer, A., Seibert, P., Steenburgh, J. W., Stiperski, I., Sturman, A., Večenaj, Ž., Vergeiner, J., Vosper, S. and Zängl, G., 2018, The community foehn classification experiment, Bulletin of the American Meteorological Society, 99, 2229-2235, doi: 10.1175/BAMS-D-17-0200.1.

10.1175/BAMS-D-17-0200.1
23 

Miltenberger, A. K., Reynolds, S., and Sprenger, M., 2016, Revisiting the latent heating contribution to foehn warming: Lagrangian analysis of two foehn events over Swiss Alps, Quarterly Journal of the Royal Meteorological Society, 142, 2194-2204, doi: 10.1002/qj.2816.

10.1002/qj.2816
24 

Montecinos, A., Muñoz, R. C., Oviedo, S., Martínez, A., and Villagrán, V., 2017, Climatological characteristics of puelche winds down the western slope of the extratropical andes mountains using the NCEP climate forecast system reanalysis, Journal of Applied Meteorology and Climatology, 56, 677-696, doi: 10.1175/JAMC-D-16-0289.1.

10.1175/JAMC-D-16-0289.1
25 

Mori, K. and Sato, T., 2014, Spatio-temporal variation of high-temperature events in Hokkaido, North Japan, Journal of the Meteorological Society of Japan, 92, 327-346, doi:10.2151/jmsj.2014-404.

10.2151/jmsj.2014-404
26 

Nkemdirim, L. C., 1996, Canada's Chinook belt, International Journal of Climatology, 16, 441-462.

10.1002/(SICI)1097-0088(199604)16:4<441::AID-JOC21>3.0.CO;2-T
27 

Norte, F. A., 2015, Understanding and forecasting Zonda wind(Andean Foehn) in Argentina: A review, Atmospheric and Climate Sciences, 5, 163-193, doi: 10.4236/ACS.2015.53012.

10.4236/acs.2015.53012
28 

Oard, M. J., 1993, A method for predicting Chinook winds east of the Montana Rockies, Weather and Forecasting, 8, 166-180.

10.1175/1520-0434(1993)008<0166:AMFPCW>2.0.CO;2
29 

Plavcan, D., Mayr, G. J. and Zeileis, A., 2014, Automatic and probabilistic foehn diagnosis with a statistical mixture model, Journal of Applied Meteorology and Climatology, 53, 652-659, doi: 10.1175/JAMV-D-13-0267.1.

10.1175/JAMC-D-13-0267.1
30 

Quaile, E. L., 2001, Back to basics: Föhn and chinook winds, Weather, 56, 141-145, doi:10.1002/j.1477-8696.2001.tb06551.x.

10.1002/j.1477-8696.2001.tb06551.x
31 

Rahn, D. A. and Garreaud, R. D., 2014, A synoptic climatology of the near-surface wind along the west coast of South America, International Journal of Climatology, 34, 780-792, doi:10.1002/joc.3724.

10.1002/joc.3724
32 

Raphael, M. N., 2003, The Santa Ana Winds of California, Earth Interactions, 7, 1-13, doi:10.1175/1098-3562(2003)007<0001:TSAWOC>2.0.CO;2.

10.1175/1087-3562(2003)007<0001:TSAWOC>2.0.CO;2
33 

Rolinski, T., Capps, S. B. and Zhuang, W., 2019, Santa Ana Winds: A descriptive climatology, Weather and Forecasting, 34, 257-275, doi:10.1175/WAF-D-18-0160.1.

10.1175/WAF-D-18-0160.1
34 

Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H., Juang, H.-M., H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Delst, P. V., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Dool, H. V. D., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L. Reynolds, R. W., Rutledge, G. and Goldberg, M., 2010, The NCEP climate forecast system reanalysis, Bulletin of the American Meteorological Society, 91, 1015-1057, doi: 10.1175/2010BAMS3001.1.

10.1175/2010BAMS3001.1
35 

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H.-Y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., Dool, H. V. D., Zhang, Q., Wang, W., Chen, M. and Becker, E., 2014, The NCEP climate forecast system version 2, Journal of Climate, 27, 2185-2208, doi: 10.1175/JCLI-D-12-00823.1.

10.1175/JCLI-D-12-00823.1
36 

Smith, R. B., 2019, 100 years of progress on mountain meteorology research, Meteological Monographs, 59, 20.1-20.73, doi:10.1175/AMSMONOGRAPHS-D-18-0022.1.

10.1175/AMSMONOGRAPHS-D-18-0022.1
37 

Stopa, J. E. and Cheung, K. F., 2014, Intercomparison of wind and wave data from the ECMWF Reanalysis Interim and the NCEP climate forecast system reanalysis, Ocean Modelling, 75, 65-83, doi:10.1016/j.ocemod.2013.12.006.

10.1016/j.ocemod.2013.12.006
38 

Takane, Y. and Kusaka, H., 2011, Formation mechanisms of the extreme high surface air temperature of 40.9℃ observed in the Tokyo metropolitan area: Considerations of dynamic foehn and foehnlike wind, Journal of Applied Meteorology and Climatology, 50, 1827-1841, doi: 10.1175/JAMC-D-10-05032.1.

10.1175/JAMC-D-10-05032.1
39 

Takane, Y., Kusaka, H., and Kondo, H., 2015, Investigation of a recent extreme high-temperature event in the Tokyo metropolitan area using numerical simulations: The potential role of a 'hybrid' foehn wind, Quarterly Journal of the Royal Meteorological Society, 141, 1857-1869, doi:10.1002/qj.2490.

10.1002/qj.2490
40 

Yu, L., Zhong, S., Bian, X. and Heilman, W. E., 2016, Climatology and trend of wind power resources in China and its surrounding regions: A revisit using Climate Forecast System Reanalysis data, International Journal of Climatology, 36, 2173-2188, doi:10.1002/joc.4485.

10.1002/joc.4485
41 

WMO, 1992, International Meteorological Vocabulary, 2nd Edition, Vol. 182, World Meteorological Organization (https://library.wmo.int/index.php?lvl=notice_display&id=220#.XgB9H-QVDcs)

42 

Würsch, M. and Sprenger, M., 2015, Swiss and Austrian foehn revisited: A lagrangian-based analysis, Meteorologische Zeitschrift, 24, 225-242, doi: 10.1127/metz/2015/0647.

10.1127/metz/2015/0647
43 

기상청, 기상자료개방포털, https://data.kma.go.kr/cmmn/ main.do

Information
  • Publisher :The Korean Geographical Society
  • Publisher(Ko) :대한지리학회
  • Journal Title :Journal of the Korean Geographical Society
  • Journal Title(Ko) :대한지리학회지
  • Volume : 55
  • No :2
  • Pages :67-81
  • Received Date :2019. 12. 31
  • Revised Date :2020. 04. 20
  • Accepted Date : 2020. 04. 21